Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368

Nobuo Okabe,* Yasunori Muranishi and Mamiko Odoko

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.027$
$w R$ factor $=0.075$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

(1,1-Cyclobutanedicarboxylato- $\kappa^{2} O, O^{\prime}$)-(2,2'-biquinoline- $\kappa^{2} N, N^{\prime}$) palladium(II) monohydrate

In the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Pd}^{\mathrm{II}}$ atom has a distorted cis-planar four-coordination geometry defined by two O atoms of a bidentate 1,1-cyclobutanedicarboxylate anion and two N atoms of the $2,2^{\prime}$-biquinoline ligand. In the crystal structure, centrosymmetric clusters of the complex molecules and water molecules are formed through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

cis-Square-planar coordinated $\mathrm{Pt}^{\mathrm{II}}$ complexes such as cisplatin [cis-diamminedichloroplatinum(II)], carboplatin [cis-diam-mine(1,1-cyclobutanedicarboxylato)platinum(II)] and oxaliplatin [trans-1-1,2-diaminocyclohexane platinum(II) oxalate], are well known anticancer drugs. Carboplatin with a bidentate 1,1-cyclobutanedicarboxylato (cbdca) ligand has fewer side effects than cisplatin (Jakupec et al., 2003). $\mathrm{Pd}^{\mathrm{II}}$ analogues of $\mathrm{Pt}^{\mathrm{II}}$ complexes have been used as good models for studies of the chemistry of square planar complexes (Rau \& van Eldik, 1996). For example, cis-diammine (1,1-cyclobutanedicarboxylate)palladium(II) (Barnham et al., 1994) is isostructural with carboplatin (Beagley et al., 1985; Neidle et al., 1980). Recently, the palladium complex with the aromatic heterocyclic ligand $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cbdca})]$ (bpy $=2,2^{\prime}$-bipyridine) has been shown to have better cytotoxic activity than cisplatin against P_{388} lymphocytic leukemia cells (Mansuri-Torshizi et al., 2001). Aromatic heterocycles can stack with nucleobases and enhance complex formation with DNA, which is the principal target in the chemotherapy of tumors (Shehata, 2001).

(I)

In a previous study (Muranishi \& Okabe, 2004), we determined the structures of the carboplatin analogs of $\mathrm{Pd}^{\mathrm{II}}$ complexes with N, N^{\prime}-bidentate aromatic heterocycle ligands bipyridine(bpy), $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cbdca})]$, and 1,10-phenanthroline (phen), $[\mathrm{Pd}($ phen $)($ cbdca $)] \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ phen $)($ cbdca $)] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Because biq (biq $=2,2^{\prime}$-biquinoline) is an aromatic heterocyclic compound with interesting characteristics, such as

Received 14 September 2005 Accepted 19 September 2005 Online 21 September 2005

Figure 1
Molecular structure of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
inhibition activity against the formation of an abnormal prion protein (Murakami-Kubo et al., 2004) and mutagenic activity as the rhodamin(III) complex (Sadiq \& Zaghal, 1996), we present in this study the structure of $[\mathrm{Pd}($ biq $)($ cbdca $)] \cdot \mathrm{H}_{2} \mathrm{O}$, (I).

The central Pd atom of (I) has a distorted cis-square planar coordination geometry, from two N atoms of biq and two O atoms of the cbdca ligand (Fig. 1). The overall structure of (I) resembles those of $[\mathrm{Pd}($ bpy $)(\mathrm{cbdca})]$, (II), $[\mathrm{Pd}($ phen $)($ cbdca) $] \cdot \mathrm{H}_{2} \mathrm{O}$, (III a), and $[\mathrm{Pd}($ phen $)(\mathrm{cbdca})] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (III $\left.b\right)$ (Muranishi \& Okabe, 2004). The bond lengths and bond angles in (I) are similar to those in (II), (III a) and (III b) and selected values are compared in Table 2. The Pd atom makes a sixmembered chelate ring with cbdca in a boat conformation, and a five-membered chelate ring with biq in an envelope conformation, in which the deviation of atom Pd1 from the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 12 / \mathrm{N} 12$ plane is 0.671 (4) \AA. The biq group is nonplanar, with a dihedral angle of $20.5(1)^{\circ}$ between the two quinoline ring systems. The cyclobutane least-squares plane is almost perpendicular to the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 12-\mathrm{N} 12$ plane in biq, with a dihedral angle of $86.8(2)^{\circ}$.

The $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ chelate angle in (I), as well as in (II), (III a) and (IIIb), is smaller than those in the ethylenediamine (en) ligand in $[\mathrm{Pd}(\mathrm{en})(\mathrm{cbdca})]\left[84.15\right.$ (8) ${ }^{\circ}$; Tercero et al., 2003] or the NH_{3} ligand in $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\right.$ (cbdca) $]\left[95.0^{\circ}\right.$; Barnham et al., 1994]. In the crystal structure, centrosymmetric clusters of the title complex and water molecules are formed through O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

Experimental

Biq (5.0 mg) dissolved in dimethylformamide (DMF, 2 ml) was reacted with palladium acetate, $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right](4.4 \mathrm{mg})$, dissolved in DMF (2 ml) for 15 min at room temperature (molar ratio of 1:1), and then an equimolar amount of 1,1-cyclobutanedicarboxylic acid dissolved in DMF (1 ml) was added with stirring. This mixture was left to stand at room temperature, and yellow block-like crystals appeared in a few days.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=522.84$	$D_{x}=1.661 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.363(2) \AA$	Cell parameters from 25
$b=10.438(2) \AA$	reflections
$c=11.450(2) \AA$	$\theta=14.9-15.0^{\circ}$
$\alpha=64.66(1)^{\circ}$	$\mu=0.93 \mathrm{~mm}^{-1}$
$\beta=80.87(2)^{\circ}$	$T=296.2 \mathrm{~K}$
$\gamma=69.07(1)^{\circ}$	Block, yellow
$V=1045.5(4) \AA^{\circ}$	$0.35 \times 0.15 \times 0.10 \mathrm{~mm}$
Data collection	
Rigaku AFC-5R diffractometer	$R_{\text {int }}=0.025$
$\omega-2 \theta$ scans	$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: ψ scan	$h=-13 \rightarrow 12$
\quad North et al., 1968$)$	$k=-13 \rightarrow 0$
$T_{\text {min }}=0.846, T_{\text {max }}=0.911$	$l=-14 \rightarrow 13$
5074 measured reflections	3 standard reflections
4809 independent reflections	every 150 reflections
4179 reflections with $I>2 \sigma(I)$	intensity decay: 0.9%

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.075$
$S=1.22$
$(\Delta / \sigma)_{\max }=-0.001$
$\Delta \rho_{\text {max }}=0.32$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0000

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A $\cdots \mathrm{O} 4$	0.90	2.07	$2.958(4)$	169
O5-H5B \cdots O2 $^{\mathrm{i}}$	0.96	1.85	$2.794(6)$	166

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Comparative selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

	(I)	$(\mathrm{II})^{\mathrm{i}}$	$(\mathrm{III} a)^{\mathrm{i}}$	$(\mathrm{III} b)^{\mathrm{i}}$
Pd1-O1	$1.995(2)$	$2.002(2)$	$2.003(4)$	$2.001(3)$
Pd1-O3	$1.988(3)$	$2.004(2)$	$2.005(4)$	$1.982(3)$
Pd1-N1	$2.037(3)$	$1.999(2)$	$1.991(5)$	$2.002(4)$
Pd1-N2	$2.020(2)$	$1.998(2)$	$1.994(5)$	$2.010(4)$
O1-Pd1-O3	$88.20(8)$	$91.68(7)$	$91.3(2)$	$92.8(1)$
O1-Pd1-N1	$96.49(9)$	$93.94(8)$	$93.0(2)$	$93.3(1)$
O1-Pd1-N2	$171.53(9)$	$174.40(6)$	$173.2(2)$	$174.7(1)$
O3-Pd1-N1	$168.17(8)$	$174.37(9)$	$174.7(2)$	$172.7(2)$
O3-Pd1-N2	$93.51(9)$	$93.57(8)$	$93.2(2)$	$91.6(1)$
N1-Pd1-N2	$80.31(9)$	$80.80(8)$	$82.2(2)$	$82.1(1)$

Note: (i) From Muranishi \& Okabe (2004).

metal-organic papers

All H atoms were located in difference Fourier maps, and were then treated as riding with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecule were located in a difference Fourier map but their parameters were not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 2000).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barnham, K. J., Djuran, M. I., Frey, U., Mazid, M. A. \& Sadler, P. J. (1994). J. Chem. Soc. Chem. Commun. pp. 65-66.

Beagley, B., Cruickshank, D. W. J., McAuliffe, C. A., Pritchard, R. G., Zaki, A. M., Beddoes, R. L., Cernik, R. J. \& Mills, O. S. (1985). J. Mol. Struct. 130, 97-102.
Jakupec, M. A., Galanski, M. \& Keooler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1-53.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mansuri-Torshizi, H., Ghadimy, S. \& Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517-1520.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Murakami-Kubo, I., Doh-ura, K., Ishikawa, K., Kawatake, S., Sasaki, K., Kira, J., Ohta, S. \& Iwaki, T. (2004). J. Virol. 78, 1281-1288.

Muranishi, Y. \& Okabe, N. (2004). Acta Cryst. C60, m47-m50.
Neidle, S., Ismail, I. M. \& Sadler, P. J. (1980). J. Inorg. Biochem. 13, 205-212.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Rau, T. \& van Eldik, R. (1996). Metal Ions in Biological Systems, Vol. 32, edited by A. Sigel \& M. Sigel, pp. 339-378. New York: Marcel Dekker.
Sadiq, M. F. \& Zaghal, M. H. (1996). Polyhedron, 16, 1483-1486.
Shehata, M. (2001). Transition Met. Chem. 26, 198-204.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tercero, J. M., Matilla, A., Sanjuan, M. A., Moreno, C. F., Martin, J. D. \& Walmsley, J. A. (2003). Inorg. Chem. Acta, 342, 77-87.

[^0]: (C) 2005 International Union of Crystallography

